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Approach

Processing the Dataset

Experiment Results

1. Prepare supervised dataset 
(whole/parts)

2. Deploy 2 distinct Deep Neural Networks
i. Specializing in single part type

ii. Generalizing across multiple parts

3. Train on different parts of 3D object 
point clouds 

Model

• Learn to distinguish the individual parts of 3D 
object point-clouds

• 3D models often have distinct parts separable in 
3D modeling programs

• Same cannot be said for objects in the real world 
such as models obtained via 3D scanners
• Manually model each piece

• Applications to computer vision and 3D Q&A
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Dataset
• 3D Object Point Clouds (ShapeNet) with labeled parts (PartNet)

• 2048 unique chair point clouds (split equally between testing and training dataset)

Jitter and 
rotation applied.

Pre-augmentation

• Randomly select 2,500/10,000 points 
for input

• Data augmentation
• Preserve invariance

• Increase dataset size

Frequency of Parts in PartNet Chairs

Result: { ‘leg’ : 4}

2 3 41

• Avoid:
• Rare parts (< 5% occurrences)

• Parts occurring in ALL objects

• Structurally similar/synonymous 
parts
• Ex. Redundant to analyze both

back_seat and 
back_seat_surface

Specialized (specific part) General (multiple parts)

Specialized (specific part) General (6 parts)
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Expanded View of Test Loss

Expanded View of Test Accuracy

Failure Cases
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Establishing correlations 

between different part 

structures potentially 

enhances the 

generalization capacity 

for rarer parts as evident 

in the general network.

Part Name Specialized General

back_frame_vertical_bars 0.7763671875 0.8173828125

back_frame_horizontal_bars 0.718750 0.7734375

bar_stretcher 0.880859375 0.8115234375

chair_arm 0.95703125 0.8994140625

foot 0.8603515625 0.8984375

leg 0.859375 0.7900390625

Parts Accuracy Results from each Deep Neural Network

• An approach that demonstrates the feasibility of solving the counting problem given 
proper part labels

• Specialized deep neural network not optimal when training dataset is sparse
• Possible future plans:

• Point-cloud attention

• Methods that reduce the amount of training data needed

Conclusions


